How to calculate transformer efficiency? Transformers, like all electrical devices, experience some power losses during operation. While ideal transformers would be lossless, real-world transformers incur power losses that manifest as heat, necessitating cooling solutions. The main types of power losses in transformers are resistive loss, eddy current loss, hysteresis loss, and flux loss. R...
India's power distribution companies Discoms are responsible for the supply and distribution of energy to a variety of consumers (industrial, commercial, agriculture, domestic, etc.). This is also, according to the Brooking Institute, the weakest link in the power ecosystem from both a financial and operational sustainability perspective. The quality of power quality Of course, the provision of po...
General Reference – Power Quality Assessment Procedure Abstract: Power quality is a frequently used term that means different things to different people. Common power quality problems occur because of the mismatch between a utility's power and the customer's energy-using equipment, leading to faulty operation. Some common power issues are sudden changes in voltage, electrical d...
ABSTRACT Distribution network operators face increasing challenges related to Power Quality (PQ). EDP Distribuição in Portugal has developed a comprehensive PQ monitoring program to address these challenges. This paper outlines the state-of-the-art PQ monitoring platform and methodology used by EDP, and presents results from monitoring HV/MV and MV/LV substations. Improvement actions...
Introduction Power quality is a general term used to describe the compatibility between connected equipment and its electrical supply. The supply system can be affected by changes to the frequency or amplitude of the voltage, the balance between phases on a three-phase system, and distortion levels of the original signals. The characteristics that are important and what can be tolerated by the con...
Harmonic Distortion Optimize Power with Active Harmonic Filters Introduction to Non-Linear Loads and Harmonic Distortion Non-linear loads, particularly in industrial and commercial settings, are significant contributors to electrical power quality issues. A prime example of a non-linear load is the Switch-Mode Power Supply (SMPS), which is prevalent in most digital electronic equipme...
Reactive Power Compensation and Overcompensation Reactive Power Compensation and Over compensation are closely related concepts in power systems management, particularly in the context of maintaining an optimal power factor and ensuring the efficient operation of electrical networks. Reactive Power Compensation Reactive Power is the component of electrical power that oscillates between the source ...
Abstract Harmonic distortion in power systems is a critical challenge that electrical engineers face, especially in today's complex and technology-driven environments. The proliferation of non-linear loads—such as variable frequency drives, power electronic converters, and uninterruptible power supplies (UPS)—has led to an increase in harmonic distortions that degrade the quality of po...