How to calculate transformer efficiency? Transformers, like all electrical devices, experience some power losses during operation. While ideal transformers would be lossless, real-world transformers incur power losses that manifest as heat, necessitating cooling solutions. The main types of power losses in transformers are resistive loss, eddy current loss, hysteresis loss, and flux loss. R...
Understanding IEEE 519-2022 Standard for Harmonic Distortion The IEEE 519 standard sets the criteria for voltage and current harmonic distortion in electrical systems. The recent IEEE 519-2022 edition, which replaces the 2014 edition as of December 2022, introduces significant changes that impact the design and management of electrical installations. Key Changes in IEEE 519-2022 &nbs...
India's power distribution companies Discoms are responsible for the supply and distribution of energy to a variety of consumers (industrial, commercial, agriculture, domestic, etc.). This is also, according to the Brooking Institute, the weakest link in the power ecosystem from both a financial and operational sustainability perspective. The quality of power quality Of course, the provision of po...
Is solar photovoltaic inverter a harmonic source? In general, the contribution of current harmonics from solar PV inverters does not pose a significant power quality issue. The current total harmonic distortion (ITHD) from a quality-brand inverter is typically low and negligible compared to harmonics-producing loads such as variable speed drives, where ITHD for a typical 6-pulse drive ranges betwe...
How do transformers and harmonic filters suppress harmonics? Harmonic Mitigation Techniques for Three-Phase Loads Three-phase loads do not produce triplen harmonics. Therefore, in environments dominated by three-phase loads, harmonic issues primarily arise from currents at the 5th, 7th, 17th, 19th, and higher harmonics. A harmonic mitigating transformer (HMT) can help reduce these ha...
General Reference – Power Quality Assessment Procedure Abstract: Power quality is a frequently used term that means different things to different people. Common power quality problems occur because of the mismatch between a utility's power and the customer's energy-using equipment, leading to faulty operation. Some common power issues are sudden changes in voltage, electrical d...
ABSTRACT Distribution network operators face increasing challenges related to Power Quality (PQ). EDP Distribuição in Portugal has developed a comprehensive PQ monitoring program to address these challenges. This paper outlines the state-of-the-art PQ monitoring platform and methodology used by EDP, and presents results from monitoring HV/MV and MV/LV substations. Improvement actions...
Introduction Power quality is a general term used to describe the compatibility between connected equipment and its electrical supply. The supply system can be affected by changes to the frequency or amplitude of the voltage, the balance between phases on a three-phase system, and distortion levels of the original signals. The characteristics that are important and what can be tolerated by the con...