How does power quality affect motors? Understanding the significance of power quality in the context of motor and electrical equipment efficiency is crucial. Power quality is evaluated through several key parameters, including harmonics, voltage unbalance, and voltage fluctuations. In an alternating current (AC) system, the interaction between voltage potential and current through th...
Harmonic Resonance Evaluation for Capacitor Banks Abstract: A utility operates feeder and substation capacitor banks on a 25.56kV distribution feeder. The utility uses frequency scan simulations to determine the effect of distribution feeder and substation capacitor banks on harmonic resonance and frequency response characteristics. It is assumed that the simulations will show that the f...
What interharmonics are & do and where they come from? Introduction The use of advanced power electronics and communication systems is improving power system efficiency, flexibility, and reliability, but it is also increasing interharmonic distortion. Knowledge of interharmonics, their sources, effects, measurement, limits, and mitigation will help the industry prevent interharmo...
What is the difference between Modular IGBT and Single Tube IGBT? IGBTs (Insulated Gate Bipolar Transistors) are key components in power electronics, widely used in inverters, motor drives, and other high-power applications. They can be categorized into different types based on their construction and application. Two common types are Modular IGBTs and Single Tube IGBTs. Here’s how the...
Why Detect and Eliminate Harmonics? Understanding Harmonic Disturbances Harmonics in electrical distribution networks represent significant disturbances that can degrade the quality of electrical power and reduce system efficiency. These disturbances, caused by non-linear loads, introduce unwanted frequencies into the power system, resulting in several adverse effects. Main Ri...
How to eliminate harmonic components in power systems? Harmonics can significantly impact power systems, leading to transformer failures, motor burnouts, nuisance tripping of circuit breakers, and overheating of neutral conductors and other components in a power distribution network. This overheating can be severe enough to cause electrical fires. Nonlinear loads, which draw current ...
Resonance and Active Harmonic Filters Resonance in power systems can lead to significant issues such as harmonic amplification, overvoltages, and equipment damage. Active Harmonic Filters (AHFs) play a crucial role in mitigating harmonic distortion and preventing resonance. Understanding how resonance occurs and how AHF can be used to manage it is key to maintaining a stable and efficient electric...
Understanding IEEE 519-2022 Standard for Harmonic Distortion The IEEE 519 standard sets the criteria for voltage and current harmonic distortion in electrical systems. The recent IEEE 519-2022 edition, which replaces the 2014 edition as of December 2022, introduces significant changes that impact the design and management of electrical installations. Key Changes in IEEE 519-2022 &nbs...